

US FDA Sentinel Initiative

Leveraging Electronic Health Data in a National Strategy for Monitoring Medical Product Safety

Gwen L. Zornberg, M.D., Sc.D.
Office of Surveillance and Epidemiology
CDER/ FDA
June 30, 2011

Sentinel Initiative - Goals

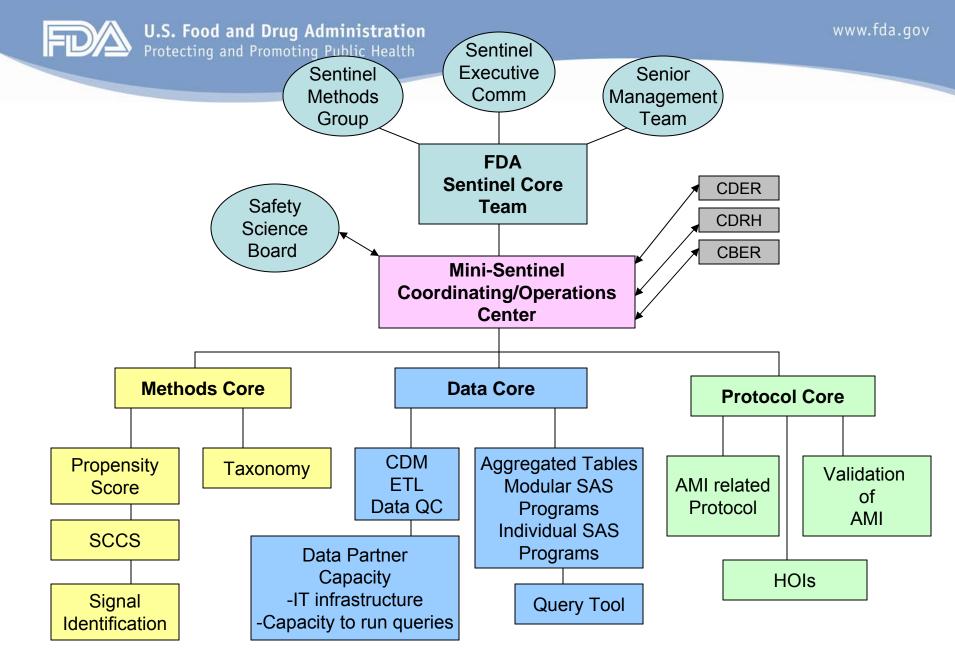
- Develop a national electronic safety monitoring system
 - Augment, not replace, existing safety monitoring systems
- Leverage multiple sources of electronic data by partnering with data holders
 - Common data model: healthcare systems, insurance companies, etc.
 - 100,000,000 patients by July 1, 2012
- Enhance active post-market monitoring of medical product safety
 - Rapidly, more effectively look at common outcomes (e.g. MI, fractures)
 - Increase population basis, sample size
 - Improved access to subgroups, special populations
- Use validated methods for signal refinement
 - Sequential monitoring
 - One time looks
 - Develop framework to include confounding adjustment
- Near real-time monitoring
 - Using sophisticated modular programs
 - "Library" of tools/resources

Sentinel Initiative - Goals

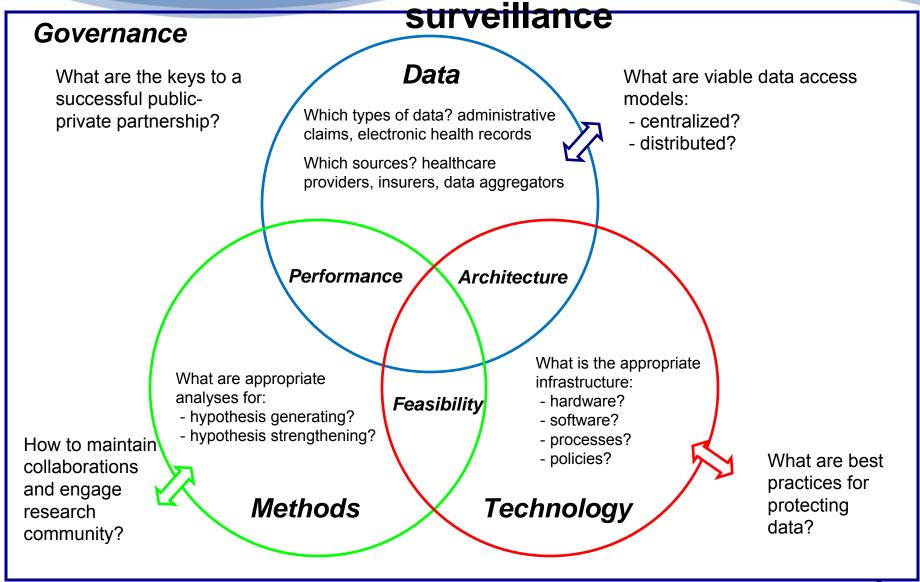
Approaches for signal generation will be under development

Sentinel Initiative Implementation Activities in FDA Center for Drug Evaluation and Research?

- Structure
 - Groups/Committees
 - Identifying and Selecting Candidate Evaluations
- Evaluations
 - New Molecular Entities
 - Drugs on Market > 2 years
 - Effects of FDA Regulatory Actions
 - Drug Utilization
 - Characterization of Populations


Sentinel Initiative – FDA Organization Agency/Center

Agency Sentinel Core Team – led by CDER Office of Medical Policy


- Leads agency development of tools/resources for medical product active surveillance
 - Janet Woodcock Senior Executive Sponsor
 - Rachel Behrman Executive Sponsor
 - Melissa Robb Project Director
 - Judy Racoosin Scientific Lead
 - Mitra Rocca Medical Informatics Lead

CDER Sentinel Related Activities – led by CDER Office of Surveillance and Epidemiology

- Leads Center implementation of Sentinel tools/resources and their integration into existing CDER surveillance procedures
 - Gerald Dal Pan Director, Office of Surveillance and Epidemiology
 - Marsha Reichman CDER Lead for Implementation of Sentinel Activities

Protecting and Outstanding questions for active

Sentinel Initiative Components

- OMOP Observational Medical Outcomes Partnership http://omop.fnih.org
- Federal Partners Collaboration
- Mini-Sentinel Pilot

Observational Medical Outcomes Partnership (OMOP)

Established to inform the appropriate use of observational healthcare databases for active surveillance by:

- •Conducting methodological research to empirically evaluate the performance of alternative methods on their ability to identify true drug safety issues
- •Developing tools and capabilities for transforming, characterizing, and analyzing disparate data sources
- •Establishing a shared resource so that the broader research community can collaboratively advance the science

OMOP- Analysis problems under study

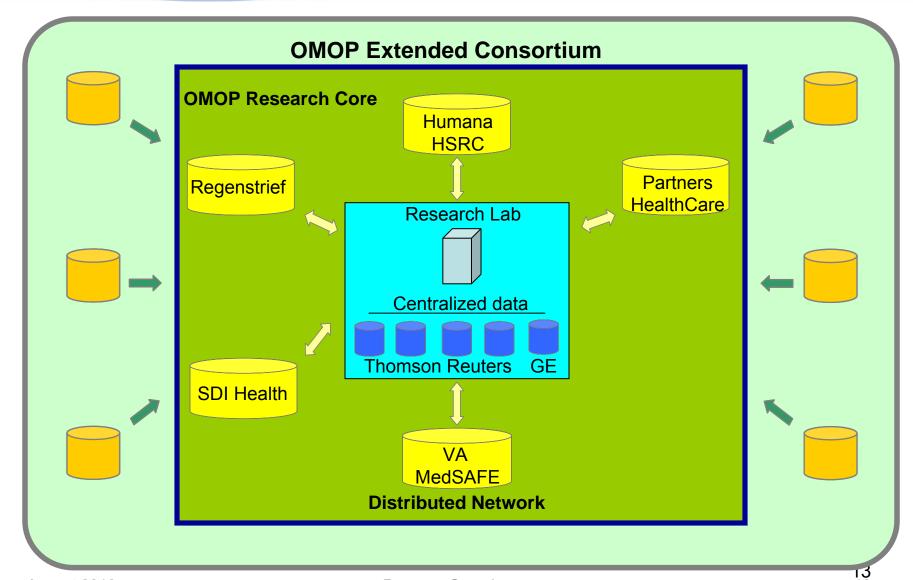
Monitoring of Health Outcomes of Interest (HOIs):

- Estimate the strength of the association between drug exposure and specific events (e.g. acute liver failure, bleeding, MI)
- Modest in number so can customize analytic approach
- Expert assessment of drug-HOI causal associations based on literature search

Identification of non-specified associations (NSA):

- More exploratory in nature
- Same goal: estimate the strength of the association between drug exposure and conditions
- Necessarily more generic analyses (e.g., adjust for age and sex)
- Causality assessment relies on the product labels

Performance against simulated data


Complement 'real world' experiments

A public-private partnership between industry, FDA and FNIH.

Partnership Stakeholders

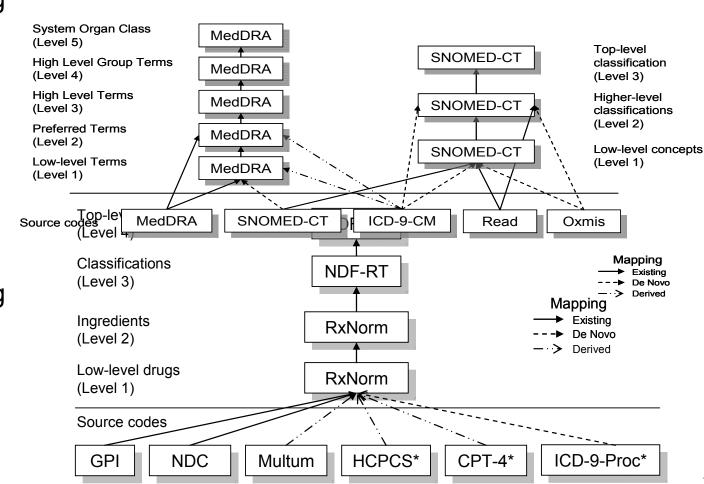
Stakeholder Groups

- FDA Executive Board [chair], Advisory Boards, PI
- Industry Executive and Advisory Boards, two PIs
- FNIH Partnership and Project Management, Research Core Staffing
- Academic Centers & Healthcare Providers Executive and Advisory Boards, three Pls, Distributed Research Partners, Methods Collaborators
- Database Owners Executive Board, Advisory Board, PI
- Consumer and Patient Advocacy Organizations Executive and Advisory Board
- US Veterans Administration Distributed research partner

OMOP Key Goal	What We Delivered
Establish OMOP Research Community	 Built the OMOP Research Lab to accommodate common data model and serve as central coordinating center Established distributed network of Data Partners (6) Launched Extended Consortium OMOP Methods Collaborators (17) Hosted OMOP Cup with 60+ participants Created OMOP Website with 1000+ registered users 2009 Symposium with 300+ attendees Presented at over 15 conferences / meetings
Establish a consistent framework to use across disparate observational data sources	 Common Data Model (CDM) Standardized terminology specifications CDM reference tables that contain the standardized terminologies and mappings from source vocabularies ETL specifications for all data partners GE Centricity & Thomson ETL source code

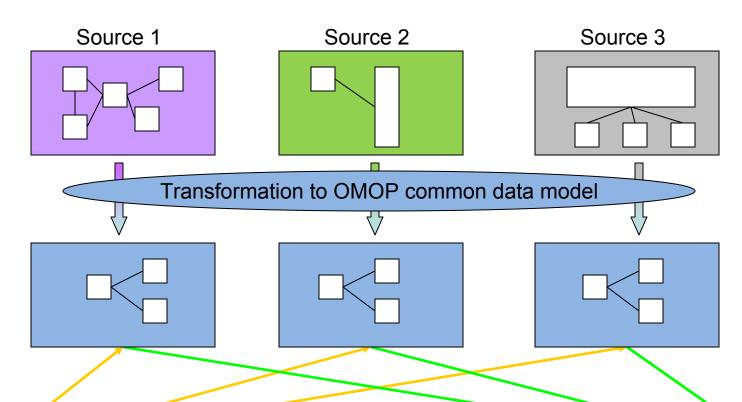
OMOP Key Goal	What We Delivered
Develop and test analysis methods within the OMOP Research Lab and other data environments	 Overview of methods (methods points-to-consider and inventory matrix) 14 methods specifications & source code 12 methods under evaluation OMOP Cup Methods Competition Observational Medical Dataset Simulator (OSIM I) - specification, source code, and datasets
Establish standard data characterization & facilitate comparisons across databases	 Observational Source Characteristics Analysis Report (OSCAR) Specification and Source Code Natural History Analysis (NATHAN) Specification and Source Code Generalized Review of OSCAR Unified Checking (GROUCH) for data quality and validation analysis

OMOP Key Goal	What We Delivered
Implement Health Outcome of Interest definitions	 HOI definition process (literature review strategy & evidence table) HOI process outputs for 10 HOIs 35 definitions for 10 HOIs Regularized Identification of Cohorts (RICO)-program to implement HOI definitions within CDM
Public-private partnership governance model with engagement on Executive Board and Advisory Boards	 12 Executive Board members, chaired by FDA and managed by Foundation for NIH 21 Advisory Board members 6 research investigators and FNIH Program Management Office


OMOP Key Goal	What We Delivered
Evaluate performance of methods and data in identifying drug safety issues	 12 analysis methods released and executed across the OMOP data community Disproportionality Analysis Univariate Self-Controlled Case Series Observational Screening Multi-Set Case Control Estimation Bayesian Logistic Regression Case Control Surveillance IC Temporal Pattern Discovery Case-Crossover HSIU Population-Based Method Maximized Sequential Probability Ratio Test High-Dimensional Propensity Score Conditional Sequential Sampling Procedure OMOP Research team conducting evaluation of data characteristics and methods performance metric scores Implementing state-of-the-art visualization and summarization tools (e.g., Spotfire)

Research Laboratory Details

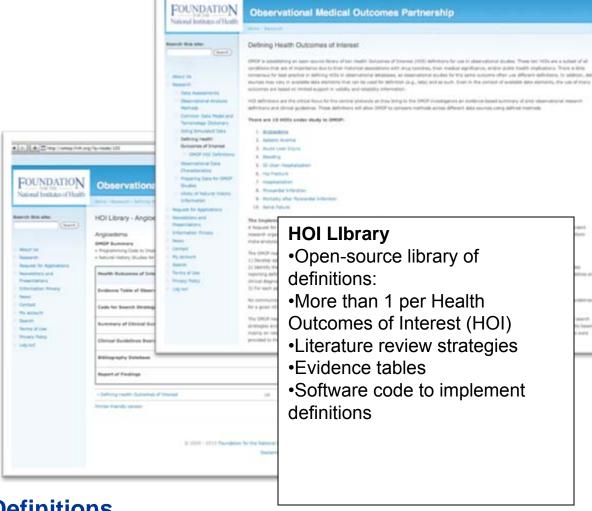
- Accommodates research databases, methods development and testing, and collaboration and coordination activities
- 2 high-end compute servers and 1 Oracle server with a total of 37 Terabytes of observational or interim data
- Execution of the experimental test of 12 computationally intensive methods with dozens of parameter sets across 5 central databases
- Secure communications and controlled information exchange infrastructure with distributed partners
- Foundation for a secure cloud-based Research Lab for additional computational capacity with a total of up to 250 processing units and significant storage capacity
- Strong access management and protection of sensitive data
- Implementation of an experimental graphics processing unit (GPU) processing platform


Standardized Terminologies To Accommodate Disparate Observational Data Sources

Standardizing conditions:

Standardizing drugs:

OMOP Analysis Process


Analysis method

OMOP Analysis results **Health Outcomes of Interest Library**

Current Health Outcomes of Interest Under Study

- Angioedema
- Aplastic Anemia
- Acute Liver Injury
- Bleeding
- •GI Ulcer Hospitalization
- Hip Fracture
- Hospitalization
- Myocardial Infarction
- Mortality after MI
- •Renal Failure

http://omop.fnih.org/HOIDefinitions

- 1. Occurrence of at least one broad diagnosis code
- 2. Occurrence of at least one narrow diagnosis code
- Occurrence of at least one narrow diagnosis code AND (diagnostic procedure <=30d before OR treatment procedure >=60d after)
- 4. Occurrence of at least one narrow diagnosis code AND (diagnostic procedure <=30d before OR treatment procedure >=60d after) AND laboratory results indicative of Hy's law: ALT >= 3xULN AND AST >= 3xULN AND Bilirubin >= 2xULN within 7 days

5. Laboratory results indicative of Hy's law:
(ALT >= 3xULN OR AST >= 3xULN) AND
Bilirubin >= 2xULN
within 7 days

Laboratory results strongly indicative of Hy's law:
 (ALT >= 10xULN OR AST >= 10xULN) AND Bilirubin >= 2xULN within 7 days

Federal Partners Collaboration

- Intra-agency agreement participants include FDA, CMS, VA, DoD
- Address medical product safety surveillance using a distributed data model where each partner has a unique database structure
- FDA proposes medical product AE pairs to evaluate
 - Develop a shared protocol
- Small distributed system
 - Each partner has unique data infrastructure
 - No common data model being utilized
 - Decentralized analytic approach

Federal Partners Collaboration

- Dronedarone / Heart Failure
 - Amiodarone (comparator)
 - Analysis and report nearing completion
- Dronedarone / Liver failure-severe liver injury
 - Developing protocol
- Uptake of Dabigatran
- Antiviral drugs / neuropsychiatric AE

Federal Partners Collaboration

Challenges

- Develop approaches to make the most of claims data to enhance outcome validation given limited access to source data
- Interpretation of evaluation findings given diverse FPC populations and differences in clinical guideline and practice
- Limits to analysis approaches with rare outcomes

Mini-Sentinel Yr 1 Activities

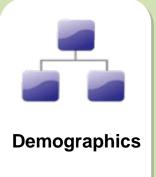
- Established Operations/Coordinating Center
- Designed common data model (MSCDM)
- Implemented MSCDM (Humana, Healthcore, HMORN, Kaiser)
- Data Quality Activities / Data Partner IT infrastructure

Mini-Sentinel Pilot Year 1 Activities

- Generated 4 modular SAS programs
- Taxonomy Working Group; Specific method groups
- Anti-diabetics / AMI protocol developed
- Researched validation efforts for 20 Health Outcomes of Interest (HOIs)
- Validation of AMI using medical records

Mini-Sentinel Modular SAS Programs

Year 1: Currently Available for Use:


- 1. Drug Use and Exposure
- 2. Drug Use among Members with a Specific Diagnosis
- Frequency of Select Incident Events/Outcomes among Members Exposed to Drugs with or without a Given Pre-Existing Condition
- 4. Concomitant Drug Use among Members with or without a Given Pre-Existing Condition

Year 2: Likely to be Developed this Year:

- 1. Background Rates
- 2. Drug and/or Procedure Use after a Diagnosis
- 3. Diagnoses/Drugs/Procedures before or after an Event / Patient Characterization

Common Data Model Version 1.1 Domain: Administrative and Claims Data

Outpatient Pharmacy Dispensing

Utilization (Encounters, Diagnosis, Procedures

Mortality (Death, Cause of Death)

CDM Tables & Data Elements

Enrollment

PatID
Enc_Start
Enc_End
Med Cov

Drug Cov

Demographic

PatID
Birth_Date
Sex
Hispanic
Race

Dispensing

PatID RxDate NDC RxSup RxAmt

Encounter

PatID
EncounterID
Adate
Ddate
Provider
Facility_Location
EncType
Facility_Code
Discharge_Disposition
Discharge_Status
DRG
DRG
Type

Admitting Source

Diagnosis

PatID
EncounterID
Adate
Provider
EncType
Dx
Dx_Codetype
OrigDX
PDX

Procedure

PatID
EncounterID
Adate
Provider
EncType
PX
PX_Codetype
OrigPX

Death

PatID
DeathDt
DtImpute
Source
Confidence

Cause of Death

patID
COD
CodeType
CauseType
Source
Confidence

Mini-Sentinel Year 2 Activities

Base/Core Contract includes:

- Continuation of Year 1 activities
- Expansion of CDM to include additional data types
- Quarterly updating of data in CDM
- Generation of additional modular SAS programs
- Executing analyses using modular programs and summary tables

Task Orders include:

- CDER task order
- CBER task order (Vaccine Safety/Prism)
- Foundational Elements (HOI validation/adjudication, statistical methods development, linking datasets)

Mini-Sentinel Year 2 Activities CDER Task Order

- New molecular entities (NMEs) on the market <2yrs
 - Sequential analysis
- Drugs on the market >2yrs
 - Examinations at a particular point in time
- Evaluation of Effects of FDA's Regulatory Actions
 - Compare MS results with results from national drug utilization databases
 - Possibility of looking at outcomes
- Drug Utilization
 - Drug usage analyses patterns of use, persistence, concomitant drug usage, etc.
 - Potential capacity to retrieve medical records through MS

Common Data Model Enhancement Year 2: Clinical Data

Clinical Data: Selected Lab Tests and Vital Signs

LabTests

Alkaline Phosphatase (ALP)

Alanine Aminotransferase (SGPT)

Total Bilirubin

Glucose

Glycosylated hemoglobin (HbA1c)

Creatinine

Hemoglobin

International Normalized Ratio (INR)

Fibrin d-dimer

Lipase

Absolute Neutrophil count (ANC)

Lab DD

MRN

Test_Type

LOINC

Stat

Pt_Loc

Result_Loc LOCAL CD

РХ

Codetype

Order ID

Order dt

Lab dt

Lab tm

Result_dt

Result tm

Result C

Result unit

Normal low C

Modifier low

Normal high C

Modifier_high

Order_dept

Facility_code

Vital Signs

Weight

Height

Systolic Blood Pressure

Diastolic Blood Pressure

Smoking Status

Mini-Sentinel Year 2 Activities Drugs on Market > 2yrs

Safety Evaluations

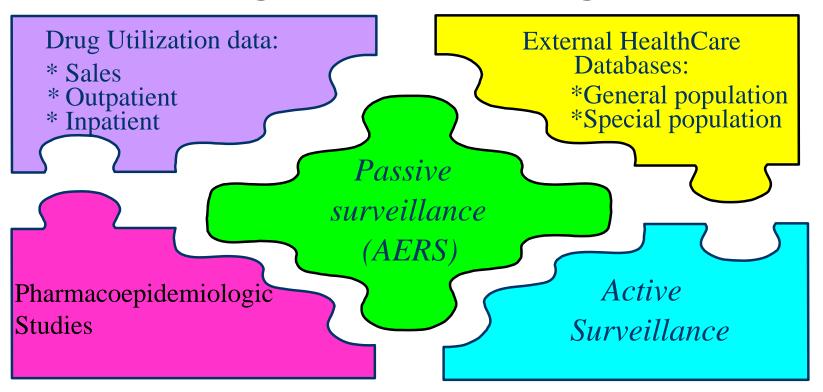
- ACEI/ARBs/Aliskiren/β-blockers and Angioedema
 - Protocol development/refinement underway
- Additional evaluation(s)

Modular SAS Programs

- Stalevo/Entacapones and Myocardial Infarction
 - Also studies in CMS and VA

Mini-Sentinel Year 2 Activities Characterize Populations

Population 65 years and older


- Mini-Sentinel and CMS
- Start:
 - 100 most frequent diagnoses
 - 100 most frequent drugs being dispensed
- Consider adding:
 - Number of diagnoses per person
 - Number of unique drugs being dispensed per person

Mini-Sentinel Year 2 Activities

Open Challenges:

- Balancing priorities from post-market tracking of safety issues with capabilities/capacity of Mini-Sentinel data (e.g. population structures, formularies, available data fields, etc)
- Implementing results from methods development; taking methods from exploratory towards "off the shelf" tools
- Rapidly identify results which merit more detailed studies or contribute to regulatory actions (e.g. when to stop sequential analyses, what boundary criteria determine further action is needed or not needed)
- How to combine active and passive surveillance data with detailed epidemiologic studies to reach regulatory decisions rapidly

Components of a Comprehensive Post-marketing Surveillance Program at CDER

Acknowledgments

- Janet Woodcock Senior Executive Sponsor
- Rachel Behrman Executive Sponsor
- Melissa Robb Project Director
- Judy Racoosin Scientific Lead
- Mitra Rocca Medical Informatics Lead
- Gerald Dal Pan Director, Office of Surveillance and Epidemiology
- Marsha Reichman CDER Lead for Implementation of Sentinel Activities
- Moni Houstoun –CDER Sentinel Coordinator
- Observational Medical Outcomes Partnership