US FDA Sentinel Initiative
Leveraging Electronic Health Data in a National Strategy for Monitoring Medical Product Safety

Gwen L. Zornberg, M.D., Sc.D.
Office of Surveillance and Epidemiology
CDER/ FDA
June 30, 2011
Sentinel Initiative - Goals

• Develop a national electronic safety monitoring system
 – Augment, not replace, existing safety monitoring systems
• Leverage multiple sources of electronic data by partnering with data holders
 – Common data model: healthcare systems, insurance companies, etc.
 – 100,000,000 patients by July 1, 2012
• Enhance active post-market monitoring of medical product safety
 – Rapidly, more effectively look at common outcomes (e.g. MI, fractures)
 – Increase population basis, sample size
 – Improved access to subgroups, special populations
• Use validated methods for signal refinement
 – Sequential monitoring
 – One time looks
 – Develop framework to include confounding adjustment
• Near real-time monitoring
 – Using sophisticated modular programs
 – “Library” of tools/resources
Sentinel Initiative - Goals

• Approaches for signal generation will be under development
Sentinel Initiative
Implementation Activities in FDA Center for Drug Evaluation and Research?

• Structure
 – Groups/Committees
 – Identifying and Selecting Candidate Evaluations

• Evaluations
 – New Molecular Entities
 – Drugs on Market > 2 years
 – Effects of FDA Regulatory Actions
 – Drug Utilization
 – Characterization of Populations
Agency Sentinel Core Team – led by CDER Office of Medical Policy

- Leads agency development of tools/resources for medical product active surveillance
 - Janet Woodcock – Senior Executive Sponsor
 - Rachel Behrman – Executive Sponsor
 - Melissa Robb – Project Director
 - Judy Racoosin - Scientific Lead
 - Mitra Rocca - Medical Informatics Lead

CDER Sentinel Related Activities – led by CDER Office of Surveillance and Epidemiology

- Leads Center implementation of Sentinel tools/resources and their integration into existing CDER surveillance procedures
 - Gerald Dal Pan - Director, Office of Surveillance and Epidemiology
 - Marsha Reichman - CDER Lead for Implementation of Sentinel Activities
Governance
What are the keys to a successful public-private partnership?

Data
Which types of data? administrative claims, electronic health records
Which sources? healthcare providers, insurers, data aggregators

What are viable data access models:
- centralized?
- distributed?

Performance
What are appropriate analyses for:
- hypothesis generating?
- hypothesis strengthening?

Architecture
What is the appropriate infrastructure:
- hardware?
- software?
- processes?
- policies?

Feasibility
What are best practices for protecting data?

Methods
How to maintain collaborations and engage research community?

Technology
What are outstanding questions for active surveillance?
Sentinel Initiative Components

- OMOP – Observational Medical Outcomes Partnership http://omop.fnih.org

- Federal Partners Collaboration

- Mini-Sentinel Pilot
Established to inform the appropriate use of observational healthcare databases for active surveillance by:

• Conducting methodological research to empirically evaluate the performance of alternative methods on their ability to identify true drug safety issues

• Developing tools and capabilities for transforming, characterizing, and analyzing disparate data sources

• Establishing a shared resource so that the broader research community can collaboratively advance the science
OMOP- Analysis problems under study

• **Monitoring of Health Outcomes of Interest (HOIs):**
 – Estimate the strength of the association between drug exposure and specific events (e.g. acute liver failure, bleeding, MI)
 – Modest in number so can customize analytic approach
 – Expert assessment of drug-HOI causal associations based on literature search

• **Identification of non-specified associations (NSA):**
 – More exploratory in nature
 – Same goal: estimate the strength of the association between drug exposure and conditions
 – Necessarily more generic analyses (e.g., adjust for age and sex)
 – Causality assessment relies on the product labels

• **Performance against simulated data**
 – Complement ‘real world’ experiments
Partnership Stakeholders

Stakeholder Groups

- **FDA** – Executive Board [chair], Advisory Boards, PI
- **Industry** – Executive and Advisory Boards, two PIs
- **FNIH** – Partnership and Project Management, Research Core Staffing
- **Academic Centers & Healthcare Providers** – Executive and Advisory Boards, three PIs, Distributed Research Partners, Methods Collaborators
- **Database Owners** – Executive Board, Advisory Board, PI
- **Consumer and Patient Advocacy Organizations** – Executive and Advisory Board
- **US Veterans Administration** – Distributed research partner
Accomplishments

<table>
<thead>
<tr>
<th>OMOP Key Goal</th>
<th>What We Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish OMOP Research Community</td>
<td>• Built the OMOP Research Lab to accommodate common data model and serve as central coordinating center</td>
</tr>
<tr>
<td></td>
<td>• Established distributed network of Data Partners (6)</td>
</tr>
<tr>
<td></td>
<td>• Launched Extended Consortium</td>
</tr>
<tr>
<td></td>
<td>• OMOP Methods Collaborators (17)</td>
</tr>
<tr>
<td></td>
<td>• Hosted OMOP Cup with 60+ participants</td>
</tr>
<tr>
<td></td>
<td>• Created OMOP Website with 1000+ registered users</td>
</tr>
<tr>
<td></td>
<td>• 2009 Symposium with 300+ attendees</td>
</tr>
<tr>
<td></td>
<td>• Presented at over 15 conferences / meetings</td>
</tr>
<tr>
<td>Establish a consistent framework to use across disparate observational data sources</td>
<td>• Common Data Model (CDM)</td>
</tr>
<tr>
<td></td>
<td>• Standardized terminology specifications</td>
</tr>
<tr>
<td></td>
<td>• CDM reference tables that contain the standardized terminologies and mappings from source vocabularies</td>
</tr>
<tr>
<td></td>
<td>• ETL specifications for all data partners</td>
</tr>
<tr>
<td></td>
<td>• GE Centricity & Thomson ETL source code</td>
</tr>
</tbody>
</table>
Accomplishments (cont)

<table>
<thead>
<tr>
<th>OMOP Key Goal</th>
<th>What We Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop and test analysis methods within the OMOP Research Lab and other data environments</td>
<td>• Overview of methods (methods points-to-consider and inventory matrix)</td>
</tr>
<tr>
<td></td>
<td>• 14 methods specifications & source code</td>
</tr>
<tr>
<td></td>
<td>• 12 methods under evaluation</td>
</tr>
<tr>
<td></td>
<td>• OMOP Cup Methods Competition</td>
</tr>
<tr>
<td></td>
<td>• Observational Medical Dataset Simulator (OSIM I) - specification, source code, and datasets</td>
</tr>
<tr>
<td></td>
<td>• Natural History Analysis (NATHAN) Specification and Source Code</td>
</tr>
<tr>
<td></td>
<td>• Generalized Review of OSCAR Unified Checking (GROUCH) for data quality and validation analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OMOP Key Goal</th>
<th>What We Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement Health Outcome of Interest definitions</td>
<td>• HOI definition process (literature review strategy & evidence table)</td>
</tr>
<tr>
<td></td>
<td>• HOI process outputs for 10 HOIs</td>
</tr>
<tr>
<td></td>
<td>• 35 definitions for 10 HOIs</td>
</tr>
<tr>
<td></td>
<td>• Regularized Identification of Cohorts (RICO)-program to implement HOI definitions within CDM</td>
</tr>
<tr>
<td>Public-private partnership governance model with</td>
<td>• 12 Executive Board members, chaired by FDA and managed by Foundation for NIH</td>
</tr>
<tr>
<td>engagement on Executive Board and Advisory</td>
<td>• 21 Advisory Board members</td>
</tr>
<tr>
<td>Boards</td>
<td>• 6 research investigators and FNIH Program Management Office</td>
</tr>
<tr>
<td>OMOP Key Goal</td>
<td>What We Delivered</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Evaluate performance of methods and data in identifying drug safety issues</td>
<td>• 12 analysis methods released and executed across the OMOP data community</td>
</tr>
<tr>
<td></td>
<td>• Disproportionality Analysis</td>
</tr>
<tr>
<td></td>
<td>• Univariate Self-Controlled Case Series</td>
</tr>
<tr>
<td></td>
<td>• Observational Screening</td>
</tr>
<tr>
<td></td>
<td>• Multi-Set Case Control Estimation</td>
</tr>
<tr>
<td></td>
<td>• Bayesian Logistic Regression</td>
</tr>
<tr>
<td></td>
<td>• Case Control Surveillance</td>
</tr>
<tr>
<td></td>
<td>• IC Temporal Pattern Discovery</td>
</tr>
<tr>
<td></td>
<td>• Case-Crossover</td>
</tr>
<tr>
<td></td>
<td>• HSIU Population-Based Method</td>
</tr>
<tr>
<td></td>
<td>• Maximized Sequential Probability Ratio Test</td>
</tr>
<tr>
<td></td>
<td>• High-Dimensional Propensity Score</td>
</tr>
<tr>
<td></td>
<td>• Conditional Sequential Sampling Procedure</td>
</tr>
<tr>
<td></td>
<td>• OMOP Research team conducting evaluation of data characteristics and methods performance metric scores</td>
</tr>
<tr>
<td></td>
<td>• Implementing state-of-the-art visualization and summarization tools (e.g., Spotfire)</td>
</tr>
</tbody>
</table>
Research Laboratory Details

- Accommodates research databases, methods development and testing, and collaboration and coordination activities
- 2 high-end compute servers and 1 Oracle server with a total of 37 Terabytes of observational or interim data
- Execution of the experimental test of 12 computationally intensive methods with dozens of parameter sets across 5 central databases
- Secure communications and controlled information exchange infrastructure with distributed partners
- Foundation for a secure cloud-based Research Lab for additional computational capacity with a total of up to 250 processing units and significant storage capacity
- Strong access management and protection of sensitive data
- Implementation of an experimental graphics processing unit (GPU) processing platform
Standardized Terminologies To Accommodate Disparate Observational Data Sources

Standardizing conditions:
- System Organ Class (Level 5)
- High Level Group Terms (Level 4)
- High Level Terms (Level 3)
- Preferred Terms (Level 2)
- Low-level Terms (Level 1)

Standardizing drugs:
- Low-level drugs (Level 1)
- Ingredients (Level 2)
- Classifications (Level 3)

Source codes:
- GPI
- NDC
- Multum
- HCPCS*
- CPT-4*
- ICD-9-Proc*

Mapping:
- Existing
- De Novo
- Derived

Top-level classification (Level 3)
Higher-level classifications (Level 2)
Low-level concepts (Level 1)

For more details, visit: http://omop.fnih.org/Vocabularies
OMOP Analysis Process

Source 1

Source 2

Source 3

Transformation to OMOP common data model
Current Health Outcomes of Interest Under Study

- Angioedema
- Aplastic Anemia
- Acute Liver Injury
- Bleeding
- GI Ulcer Hospitalization
- Hip Fracture
- Hospitalization
- Myocardial Infarction
- Mortality after MI
- Renal Failure

[Link to Health Outcomes of Interest Library](http://omop.fnih.org/HOIDefinitions)
Acute liver injury

1. Occurrence of at least one broad diagnosis code

2. Occurrence of at least one narrow diagnosis code

3. Occurrence of at least one narrow diagnosis code
 AND (diagnostic procedure <=30d before
 OR treatment procedure >=60d after)

4. Occurrence of at least one narrow diagnosis code
 AND (diagnostic procedure <=30d before
 OR treatment procedure >=60d after)
 AND laboratory results indicative of Hy’s law:
 ALT >= 3xULN AND AST >= 3xULN AND Bilirubin >= 2xULN
 within 7 days

5. Laboratory results indicative of Hy’s law:
 (ALT >= 3xULN OR AST >= 3xULN) AND Bilirubin >= 2xULN
 within 7 days

6. Laboratory results strongly indicative of Hy’s law:
 (ALT >= 10xULN OR AST >= 10xULN) AND Bilirubin >= 2xULN
 within 7 days
Federal Partners Collaboration

- Intra-agency agreement participants include FDA, CMS, VA, DoD
- Address medical product safety surveillance using a distributed data model where each partner has a unique database structure
- FDA proposes medical product – AE pairs to evaluate
 - Develop a shared protocol
- Small distributed system
 - Each partner has unique data infrastructure
 - No common data model being utilized
 - Decentralized analytic approach
Federal Partners Collaboration

• Dronedarone / Heart Failure
 – Amiodarone (comparator)
 – Analysis and report nearing completion
• Dronedarone / Liver failure-severe liver injury
 – Developing protocol
• Uptake of Dabigatran
• Antiviral drugs / neuropsychiatric AE
Federal Partners Collaboration

• Challenges
 – Develop approaches to make the most of claims data to enhance outcome validation given limited access to source data
 – Interpretation of evaluation findings given diverse FPC populations and differences in clinical guideline and practice
 – Limits to analysis approaches with rare outcomes
Mini-Sentinel Yr 1 Activities

• Established Operations/Coordinating Center
• Designed common data model (MSCDM)
• Implemented MSCDM (Humana, Healthcore, HMORN, Kaiser)
• Data Quality Activities / Data Partner IT infrastructure
Mini-Sentinel Pilot Year 1 Activities

- Generated 4 modular SAS programs
- Taxonomy Working Group; Specific method groups
- Anti-diabetics / AMI protocol developed
- Researched validation efforts for 20 Health Outcomes of Interest (HOIs)
- Validation of AMI using medical records
Mini-Sentinel
Modular SAS Programs

Year 1: Currently Available for Use:

1. Drug Use and Exposure
2. Drug Use among Members with a Specific Diagnosis
3. Frequency of Select Incident Events/Outcomes among Members Exposed to Drugs with or without a Given Pre-Existing Condition
4. Concomitant Drug Use among Members with or without a Given Pre-Existing Condition

Year 2: Likely to be Developed this Year:

1. Background Rates
2. Drug and/or Procedure Use after a Diagnosis
3. Diagnoses/Drugs/Procedures before or after an Event / Patient Characterization
Common Data Model Version 1.1
Domain: Administrative and Claims Data
CDM Tables & Data Elements

Enrollment
- PatID
- Enc_Start
- Enc_End
- Med_Cov
- Drug_Cov

Demographic
- PatID
- Birth_Date
- Sex
- Hispanic
- Race

Dispensing
- PatID
- RxDate
- NDC
- RxSup
- RxAmt

Encounter
- PatID
- EncounterID
- Adate
- Ddate
- Provider
- Facility_Location
- EncType
- Facility_Code
- Discharge_Disposition
- Discharge_Status
- DRG
- DRG_Type
- Admitting_Source

Diagnosis
- PatID
- EncounterID
- Adate
- Provider
- EncType
- Dx
- Dx_Codetype
- OrigDX
- PDX

Procedure
- PatID
- EncounterID
- Adate
- Provider
- EncType
- PX
- PX_Codetype
- OrigPX

Death
- PatID
- DeathDt
- DtImpute
- Source
- Confidence

Cause of Death
- patID
- COD
- CodeType
- CauseType
- Source
- Confidence
Mini-Sentinel Year 2 Activities

Base/Core Contract includes:
- Continuation of Year 1 activities
- Expansion of CDM to include additional data types
- Quarterly updating of data in CDM
- Generation of additional modular SAS programs
- Executing analyses using modular programs and summary tables

Task Orders include:
- CDER task order
- CBER task order (Vaccine Safety/Prism)
- Foundational Elements (HOI validation/adjudication, statistical methods development, linking datasets)
Mini-Sentinel Year 2 Activities
CDER Task Order

- New molecular entities (NMEs) on the market <2yrs
 - Sequential analysis
- Drugs on the market >2yrs
 - Examinations at a particular point in time
- Evaluation of Effects of FDA’s Regulatory Actions
 - Compare MS results with results from national drug utilization databases
 - Possibility of looking at outcomes
- Drug Utilization
 - Drug usage analyses – patterns of use, persistence, concomitant drug usage, etc.
 - Potential capacity to retrieve medical records through MS
Common Data Model
Enhancement Year 2: Clinical Data

Labs

Vital Signs
Clinical Data: Selected Lab Tests and Vital Signs

<table>
<thead>
<tr>
<th>LabTests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline Phosphatase (ALP)</td>
</tr>
<tr>
<td>Alanine Aminotransferase (SGPT)</td>
</tr>
<tr>
<td>Total Bilirubin</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
<tr>
<td>Glycosylated hemoglobin (HbA1c)</td>
</tr>
<tr>
<td>Creatinine</td>
</tr>
<tr>
<td>Hemoglobin</td>
</tr>
<tr>
<td>International Normalized Ratio (INR)</td>
</tr>
<tr>
<td>Fibrin d-dimer</td>
</tr>
<tr>
<td>Lipase</td>
</tr>
<tr>
<td>Absolute Neutrophil count (ANC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRN</td>
</tr>
<tr>
<td>Test_Type</td>
</tr>
<tr>
<td>LOINC</td>
</tr>
<tr>
<td>Stat</td>
</tr>
<tr>
<td>Pt_Loc</td>
</tr>
<tr>
<td>Result_Loc</td>
</tr>
<tr>
<td>LOCAL_CD</td>
</tr>
<tr>
<td>PX</td>
</tr>
<tr>
<td>Codetype</td>
</tr>
<tr>
<td>Order_ID</td>
</tr>
<tr>
<td>Order_dt</td>
</tr>
<tr>
<td>Lab_dt</td>
</tr>
<tr>
<td>Lab_tm</td>
</tr>
<tr>
<td>Result_dt</td>
</tr>
<tr>
<td>Result_tm</td>
</tr>
<tr>
<td>Result_C</td>
</tr>
<tr>
<td>Result_unit</td>
</tr>
<tr>
<td>Normal_low_C</td>
</tr>
<tr>
<td>Modifier_low</td>
</tr>
<tr>
<td>Normal_high_C</td>
</tr>
<tr>
<td>Modifier_high</td>
</tr>
<tr>
<td>Order_dept</td>
</tr>
<tr>
<td>Facility_code</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vital Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>Diastolic Blood Pressure</td>
</tr>
<tr>
<td>Smoking Status</td>
</tr>
</tbody>
</table>
Mini-Sentinel Year 2 Activities

Drugs on Market > 2yrs

Safety Evaluations

• ACEI/ARBs/Aliskiren/β-blockers and Angioedema
 – Protocol development/refinement underway

• Additional evaluation(s)

Modular SAS Programs

• Stalevo/Entacapones and Myocardial Infarction
 – Also studies in CMS and VA
Mini-Sentinel Year 2 Activities

Characterize Populations

Population 65 years and older

- Mini-Sentinel and CMS
- Start:
 - 100 most frequent diagnoses
 - 100 most frequent drugs being dispensed
- Consider adding:
 - Number of diagnoses per person
 - Number of unique drugs being dispensed per person
Mini-Sentinel Year 2 Activities

Open Challenges:

• Balancing priorities from post-market tracking of safety issues with capabilities/capacity of Mini-Sentinel data (e.g. population structures, formularies, available data fields, etc)

• Implementing results from methods development; taking methods from exploratory towards “off the shelf” tools

• Rapidly identify results which merit more detailed studies or contribute to regulatory actions (e.g. when to stop sequential analyses, what boundary criteria determine further action is needed or not needed)

• How to combine active and passive surveillance data with detailed epidemiologic studies to reach regulatory decisions rapidly
Components of a Comprehensive Post-marketing Surveillance Program at CDER

Drug Utilization data:
- Sales
- Outpatient
- Inpatient

External HealthCare Databases:
- General population
- Special population

Passive surveillance (AERS)

Active Surveillance

Pharmacoepidemiologic Studies
Acknowledgments

– Janet Woodcock – Senior Executive Sponsor
– Rachel Behrman – Executive Sponsor
– Melissa Robb – Project Director
– Judy Racoosin - Scientific Lead
– Mitra Rocca - Medical Informatics Lead
– Gerald Dal Pan - Director, Office of Surveillance and Epidemiology
– Marsha Reichman - CDER Lead for Implementation of Sentinel Activities
– Moni Houstoun –CDER Sentinel Coordinator
– Observational Medical Outcomes Partnership