Print page Resize text Change font-size Change font-size Change font-size High contrast

Home > Standards & Guidances > Methodological Guide

ENCePP Guide on Methodological Standards in Pharmacoepidemiology


10.3.4. Data collection

The same principles and approaches to data collection as for other pharmacoepidemiological studies can be followed (see section 3 of this Guide on Approaches to Data Collection). An efficient approach to data collection for pharmacogenetic studies is to combine secondary use of electronic health records with primary data collection (e.g. biological samples to extract DNA).


Examples are given by SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink (Clin Pharmacol Ther 2013;94(6):695-701), Diuretic therapy, the alpha-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension (JAMA 2002;287(13):1680-9) and Interaction between the Gly460Trp alpha-adducin gene variant and diuretics on the risk of myocardial infarction (J Hypertens 2009 Jan;27(1):61-8). Another approach to enrich electronic health records with biological samples is record linkage to biobanks as illustrated in Genetic variation in the renin-angiotensin system modifies the beneficial effects of ACE inhibitors on the risk of diabetes mellitus among hypertensives (Hum Hypertens 2008;22(11):774-80). A third approach is to use active surveillance methods to fully characterise drug effects such that a rigorous phenotype can be developed prior to genetic analysis. This approach was followed in Adverse drug reaction active surveillance: developing a national network in Canada's children's hospitals (Pharmacoepidemiol Drug Saf 2009;18(8):713-21) and EUDRAGENE: European collaboration to establish a case-control DNA collection for studying the genetic basis of adverse drug reactions (Pharmacogenomics 2006;7(4):633-8).




Individual Chapters:


1. Introduction

2. Formulating the research question

3. Development of the study protocol

4. Approaches to data collection

4.1. Primary data collection

4.1.1. Surveys

4.1.2. Randomised clinical trials

4.2. Secondary data collection

4.3. Patient registries

4.3.1. Definition

4.3.2. Conceptual differences between a registry and a study

4.3.3. Methodological guidance

4.3.4. Registries which capture special populations

4.3.5. Disease registries in regulatory practice and health technology assessment

4.4. Spontaneous report database

4.5. Social media and electronic devices

4.6. Research networks

4.6.1. General considerations

4.6.2. Models of studies using multiple data sources

4.6.3. Challenges of different models

5. Study design and methods

5.1. Definition and validation of drug exposure, outcomes and covariates

5.1.1. Assessment of exposure

5.1.2. Assessment of outcomes

5.1.3. Assessment of covariates

5.1.4. Validation

5.2. Bias and confounding

5.2.1. Selection bias

5.2.2. Information bias

5.2.3. Confounding

5.3. Methods to handle bias and confounding

5.3.1. New-user designs

5.3.2. Case-only designs

5.3.3. Disease risk scores

5.3.4. Propensity scores

5.3.5. Instrumental variables

5.3.6. Prior event rate ratios

5.3.7. Handling time-dependent confounding in the analysis

5.4. Effect measure modification and interaction

5.5. Ecological analyses and case-population studies

5.6. Pragmatic trials and large simple trials

5.6.1. Pragmatic trials

5.6.2. Large simple trials

5.6.3. Randomised database studies

5.7. Systematic reviews and meta-analysis

5.8. Signal detection methodology and application

6. The statistical analysis plan

6.1. General considerations

6.2. Statistical analysis plan structure

6.3. Handling of missing data

7. Quality management

8. Dissemination and reporting

8.1. Principles of communication

8.2. Communication of study results

9. Data protection and ethical aspects

9.1. Patient and data protection

9.2. Scientific integrity and ethical conduct

10. Specific topics

10.1. Comparative effectiveness research

10.1.1. Introduction

10.1.2. General aspects

10.1.3. Prominent issues in CER

10.2. Vaccine safety and effectiveness

10.2.1. Vaccine safety

10.2.2. Vaccine effectiveness

10.3. Design and analysis of pharmacogenetic studies

10.3.1. Introduction

10.3.2. Identification of generic variants

10.3.3. Study designs

10.3.4. Data collection

10.3.5. Data analysis

10.3.6. Reporting

10.3.7. Clinical practice guidelines

10.3.8. Resources

Annex 1. Guidance on conducting systematic revies and meta-analyses of completed comparative pharmacoepidemiological studies of safety outcomes