Print page Resize text Change font-size Change font-size Change font-size High contrast

Home > Standards & Guidances > Methodological Guide

ENCePP Guide on Methodological Standards in Pharmacoepidemiology



4.4.3. Randomised database studies

Randomised database studies can be considered a special form of an LST where patients included in the trial are enrolled in a healthcare system with electronic records. Eligible patients may be identified and flagged automatically by the software, with the advantage of allowing comparison of included and non-included patients. Database screening or record linkage can be used to detect and measure outcomes of interest otherwise assessed through the normal process of care. Patient recruitment, informed consent and proper documentation of patient information are hurdles that still need to be addressed in accordance with the applicable legislation for RCTs. Randomised database studies attempt to combine the advantages of randomisation and observational database studies. These and other aspects of randomised database studies are discussed in The opportunities and challenges of pragmatic point-of-care randomised trials using routinely collected electronic records: evaluations of two exemplar trials (Health Technol Assess. 2014;18(43):1-146) which illustrates the practical implementation of randomised studies in general practice databases.


There are few published examples of randomised database studies, but this design could become more common in the near future with the increasing computerisation of medical records. Pragmatic randomised trials using routine electronic health records: putting them to the test (BMJ 2012;344:e55) describes a project to implement randomised trials in the everyday clinical work of general practitioners, comparing treatments that are already in common use, and using routinely collected electronic healthcare records both to identify participants and to gather results.

Another use of databases in RCT is the long-term follow-up of patients in observational studies after RCT termination, for example to assess long-term safety and effectiveness at regular intervals using objective outcomes. The TASTE trial is an example of trial that followed patients long-term using routinely collected data (Thrombus aspiration during ST-segment elevation myocardial infarction. N. Engl J Med. 2013;369(17):1587-97).


Individual Chapters:


1. General aspects of study protocol

2. Research question

3. Approaches to data collection

3.1. Primary data collection

3.2. Secondary use of data

3.3. Research networks

3.4. Spontaneous report database

3.5. Using data from social media and electronic devices as a data source

3.5.1. General considerations

4. Study design and methods

4.1. General considerations

4.2. Challenges and lessons learned

4.2.1. Definition and validation of drug exposure, outcomes and covariates Assessment of exposure Assessment of outcomes Assessment of covariates Validation

4.2.2. Bias and confounding Choice of exposure risk windows Time-related bias Immortal time bias Other forms of time-related bias Confounding by indication Protopathic bias Surveillance bias Unmeasured confounding

4.2.3. Methods to handle bias and confounding New-user designs Case-only designs Disease risk scores Propensity scores Instrumental variables Prior event rate ratios Handling time-dependent confounding in the analysis

4.2.4. Effect modification

4.3. Ecological analyses and case-population studies

4.4. Hybrid studies

4.4.1. Pragmatic trials

4.4.2. Large simple trials

4.4.3. Randomised database studies

4.5. Systematic review and meta-analysis

4.6. Signal detection methodology and application

5. The statistical analysis plan

5.1. General considerations

5.2. Statistical plan

5.3. Handling of missing data

6. Quality management

7. Communication

7.1. Principles of communication

7.2. Guidelines on communication of studies

8. Legal context

8.1. Ethical conduct, patient and data protection

8.2. Pharmacovigilance legislation

8.3. Reporting of adverse events/reactions

9. Specific topics

9.1. Comparative effectiveness research

9.1.1. Introduction

9.1.2. General aspects

9.1.3. Prominent issues in CER Randomised clinical trials vs. observational studies Use of electronic healthcare databases Bias and confounding in observational CER

9.2. Vaccine safety and effectiveness

9.2.1. Vaccine safety General aspects Signal detection Signal refinement Hypothesis testing studies Meta-analyses Studies on vaccine safety in special populations

9.2.2. Vaccine effectiveness Definitions Traditional cohort and case-control studies Screening method Indirect cohort (Broome) method Density case-control design Test negative design Case coverage design Impact assessment Methods to study waning immunity

9.3. Design and analysis of pharmacogenetic studies

9.3.1. Introduction

9.3.2. Identification of genetic variants

9.3.3. Study designs

9.3.4. Data collection

9.3.5. Data analysis

9.3.6. Reporting

9.3.7. Clinical practice guidelines

9.3.8. Resources

Annex 1. Guidance on conducting systematic revies and meta-analyses of completed comparative pharmacoepidemiological studies of safety outcomes