Print page Resize text Change font-size Change font-size Change font-size High contrast


methodologicalGuide5_2_1.shtml
Home > Standards & Guidances > Methodological Guide

ENCePP Guide on Methodological Standards in Pharmacoepidemiology

 

5.2.1. Selection bias

 

Selection bias entails the selective recruitment into the study of subjects that are not representative of the exposure or outcome pattern in the source population. Examples of selection bias are referral bias, self-selection bias, prevalence bias or protopathic bias (Strom BL, Kimmel SE, Hennessy S. Pharmacoepidemiology, 5th Edition, Wiley, 2012).

 

Protopathic bias

 

Protopathic bias arises when the initiation of a drug (exposure) occurs in response to a symptom of the (at this point undiagnosed) disease under study (outcome). For example, use of analgesics in response to pain caused by an undiagnosed tumour might lead to the erroneous conclusion that the analgesic caused the tumour. Protopathic bias thus reflects a reversal of cause and effect (Bias: Considerations for research practice. Am J Health Syst Pharm 2008;65:2159-68). This is particularly a problem in studies of drug-cancer associations and other outcomes with long latencies. It may be handled by including a time-lag, i.e. by disregarding all exposure during a specified period of time before the index date.

 

Prevalence bias

 

The practice of including prevalent users in observational studies, i.e. patients taking a therapy for some time before study follow-up began, can cause two types of bias. Firstly, prevalent users are ‘survivors’ (healthy-users) of the early period of pharmacotherapy, which can introduce substantial selection bias if risk varies with time, as seen in the association between contraceptive intake and venous thrombosis which was initially overestimated due to the heathy-users bias. (The Transnational Study on Oral Contraceptives and the Health of Young Women. Methods, results, new analyses and the healthy user effect, Hum Reprod Update. 1999 Nov-Dec;5(6)). Secondly, covariates for drug users at study entry are often plausibly affected by the drug itself.


 

Individual Chapters:

 

1. Introduction

2. Formulating the research question

3. Development of the study protocol

4. Approaches to data collection

4.1. Primary data collection

4.1.1. Surveys

4.1.2. Randomised clinical trials

4.2. Secondary data collection

4.3. Patient registries

4.3.1. Definition

4.3.2. Conceptual differences between a registry and a study

4.3.3. Methodological guidance

4.3.4. Registries which capture special populations

4.3.5. Disease registries in regulatory practice and health technology assessment

4.4. Spontaneous report database

4.5. Social media and electronic devices

4.6. Research networks

4.6.1. General considerations

4.6.2. Models of studies using multiple data sources

4.6.3. Challenges of different models

5. Study design and methods

5.1. Definition and validation of drug exposure, outcomes and covariates

5.1.1. Assessment of exposure

5.1.2. Assessment of outcomes

5.1.3. Assessment of covariates

5.1.4. Validation

5.2. Bias and confounding

5.2.1. Selection bias

5.2.2. Information bias

5.2.3. Confounding

5.3. Methods to handle bias and confounding

5.3.1. New-user designs

5.3.2. Case-only designs

5.3.3. Disease risk scores

5.3.4. Propensity scores

5.3.5. Instrumental variables

5.3.6. Prior event rate ratios

5.3.7. Handling time-dependent confounding in the analysis

5.4. Effect measure modification and interaction

5.5. Ecological analyses and case-population studies

5.6. Pragmatic trials and large simple trials

5.6.1. Pragmatic trials

5.6.2. Large simple trials

5.6.3. Randomised database studies

5.7. Systematic reviews and meta-analysis

5.8. Signal detection methodology and application

6. The statistical analysis plan

6.1. General considerations

6.2. Statistical analysis plan structure

6.3. Handling of missing data

7. Quality management

8. Dissemination and reporting

8.1. Principles of communication

8.2. Communication of study results

9. Data protection and ethical aspects

9.1. Patient and data protection

9.2. Scientific integrity and ethical conduct

10. Specific topics

10.1. Comparative effectiveness research

10.1.1. Introduction

10.1.2. General aspects

10.1.3. Prominent issues in CER

10.2. Vaccine safety and effectiveness

10.2.1. Vaccine safety

10.2.2. Vaccine effectiveness

10.3. Design and analysis of pharmacogenetic studies

10.3.1. Introduction

10.3.2. Identification of generic variants

10.3.3. Study designs

10.3.4. Data collection

10.3.5. Data analysis

10.3.6. Reporting

10.3.7. Clinical practice guidelines

10.3.8. Resources

Annex 1. Guidance on conducting systematic revies and meta-analyses of completed comparative pharmacoepidemiological studies of safety outcomes