Print page Resize text Change font-size Change font-size Change font-size High contrast


methodologicalGuide6_3.shtml
Home > Standards & Guidances > Methodological Guide

ENCePP Guide on Methodological Standards in Pharmacoepidemiology

 

6.3. Handling of missing data

Missing data, or missing values, occur when no data value is stored for the variable in the current observation. Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data.

 

The book Statistical analysis with missing data (Little RJA, Rubin DB. 2nd ed.,Wiley 2002) describes many aspects of the handling of missing data. The section ‘Handling of missing values’ in Rothman’s Modern Epidemiology, 3rd ed. (K. Rothman, S. Greenland, T. Lash. Lippincott Williams & Wilkins, 2008) is a summary of the state of the art, focused on practical issues for epidemiologists. Ways of dealing with such data include complete subject analysis (subjects with missing values are deleted from the analyses) and imputation methods (missing data are predicted based on the observed values and the pattern of missingness). A method commonly used in epidemiology is to create a category of the variable, or an indicator, for the missing values. This practice can be invalid even if the data are missing completely at random and should be avoided (Indicator and Stratification Methods for Missing Explanatory Variables in Multiple Linear Regression. J Am Stat Assoc 1996;91(433):222–230).

 

A concise review of methods to handle missing data is also provided in the section ‘Missing data’ of the Encyclopedia of Epidemiologic Methods (Gail MH, Benichou J, Editors. Wiley 2000). Identifying the pattern of missing data is important as some methods for handling missing data assume a defined pattern of missingness. Biased results may be obtained if it is incorrectly assumed that data are missing at random. In general, it is desirable to show that conclusions drawn from the data are not sensitive to the particular strategy used to handle missing values. To investigate this, it may be helpful to repeat the analysis with a variety of approaches.

Other useful references on handling of missing data include the books Multiple Imputation for Nonresponse in Surveys (Rubin DB, Wiley, 1987) and Analysis of Incomplete Multivariate Data (Schafer JL, Chapman & Hall/CRC, 1997), and the articles Using the outcome for imputation of missing predictor values was preferred (J Clin Epi 2006;59(10):1092-101), Recovery of information from multiple imputation: a simulation study (Emerg Themes Epidemiol 2012;9(1):3) and Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data (Stat Med. 2014;33:3725-37).

 

Individual Chapters:

 

1. Introduction

2. Formulating the research question

3. Development of the study protocol

4. Approaches to data collection

4.1. Primary data collection

4.1.1. Surveys

4.1.2. Randomised clinical trials

4.2. Secondary data collection

4.3. Patient registries

4.3.1. Definition

4.3.2. Conceptual differences between a registry and a study

4.3.3. Methodological guidance

4.3.4. Registries which capture special populations

4.3.5. Disease registries in regulatory practice and health technology assessment

4.4. Spontaneous report database

4.5. Social media and electronic devices

4.6. Research networks

4.6.1. General considerations

4.6.2. Models of studies using multiple data sources

4.6.3. Challenges of different models

5. Study design and methods

5.1. Definition and validation of drug exposure, outcomes and covariates

5.1.1. Assessment of exposure

5.1.2. Assessment of outcomes

5.1.3. Assessment of covariates

5.1.4. Validation

5.2. Bias and confounding

5.2.1. Selection bias

5.2.2. Information bias

5.2.3. Confounding

5.3. Methods to handle bias and confounding

5.3.1. New-user designs

5.3.2. Case-only designs

5.3.3. Disease risk scores

5.3.4. Propensity scores

5.3.5. Instrumental variables

5.3.6. Prior event rate ratios

5.3.7. Handling time-dependent confounding in the analysis

5.4. Effect measure modification and interaction

5.5. Ecological analyses and case-population studies

5.6. Pragmatic trials and large simple trials

5.6.1. Pragmatic trials

5.6.2. Large simple trials

5.6.3. Randomised database studies

5.7. Systematic reviews and meta-analysis

5.8. Signal detection methodology and application

6. The statistical analysis plan

6.1. General considerations

6.2. Statistical analysis plan structure

6.3. Handling of missing data

7. Quality management

8. Dissemination and reporting

8.1. Principles of communication

8.2. Communication of study results

9. Data protection and ethical aspects

9.1. Patient and data protection

9.2. Scientific integrity and ethical conduct

10. Specific topics

10.1. Comparative effectiveness research

10.1.1. Introduction

10.1.2. General aspects

10.1.3. Prominent issues in CER

10.2. Vaccine safety and effectiveness

10.2.1. Vaccine safety

10.2.2. Vaccine effectiveness

10.3. Design and analysis of pharmacogenetic studies

10.3.1. Introduction

10.3.2. Identification of generic variants

10.3.3. Study designs

10.3.4. Data collection

10.3.5. Data analysis

10.3.6. Reporting

10.3.7. Clinical practice guidelines

10.3.8. Resources

Annex 1. Guidance on conducting systematic revies and meta-analyses of completed comparative pharmacoepidemiological studies of safety outcomes