

Update on COVID-19 vaccines and therapeutics

ENCEPP 30th November 2022

- Dr. Marco Cavaleri
- Head of Health Threats and Vaccines Strategy
- Chair of EMA Emergency Task Force

	Vaccine	Platform*	Strain	Use					
			$\times\!\!\times$		≥6 months	≥5 years	≥12 years	≥18 years	
		mRNA	Original atomia	Primary vaccination	6 months to 4 years	5-11 years	V	~	
	Comirnaty		Original strain	Booster		5-11 years	~	~	
	(BioNTech)		Original strain + Omicron BA.1 variant (adapted**)	Booster			~	~	
			Original strain + Omicron BA.4-5 variants (adapted**)	Booster		5-11 years	v	~	
	Spikevax (Moderna)		Original strain	Primary vaccination	6 months to 5 years	6-11 years	~	~	
		mRNA		Booster			~	~	
			Original strain + Omicron BA.1 variant (adapted**)	Booster			~	~	
			Original strain + Omicron BA.4-5 variants (adapted**)	Booster			~	~	
	Vaxzevria	Adenoviral vector	Original strain	Primary vaccination				~	
	(AstraZeneca)		Original strain	Booster				~	
	Jcovden	Adenoviral	Original strain	Primary vaccination				~	
	(Janssen)	vector	Original Strain	Booster				~	
	Nuvaxovid	Protein	Original strain	Primary vaccination			v	~	
	(Novavax)	Totelli	Original scalin	Booster				~	
	COVID-19 Vaccine Valneva (Valneva)	Inactivated	Original strain	Primary vaccination				18-50 years	
	VidPrevtyn Beta (Sanofi Pasteur)	Protein	Beta variant	Booster				~	

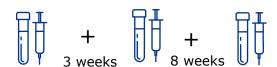
Efficacy in children for mRNA COVID-19 vaccines

Spikevax $25\mu g$ (6 months – 5 years of age)

Phase 2/3 randomised, saline placebo-controlled, observer-blind study (N=5,500, Omicron circulating)

- 2-dose regimen with half dose as used in 6-11YOA (50ug) based on phase 1/2 data (3 doses in IC)
- Immunobridging strategy common if no established correlate protection: neutralising abs (primary endpoint) non-inferior to individuals 18-25 years of age where efficacy was demonstrated
- Good correlation seen between neutralising abs and vaccine efficacy for COVID-19, but no antibody threshold found
- Efficacy was evaluated as exploratory in seronegative subjects at baseline preliminary data show low efficacy due to Omicron in line with adult data but estimates not reliable
- Duration of protection unknown
- Special populations not yet studied

Efficacy in children for mRNA COVID-19 vaccines


Comirnaty $3\mu g$ (6 months – 4 years of age)

 Phase 2/3 randomised, saline placebo-controlled, observer-blind study (N= 1300, most cases BA.2 and BA.2.12.1)

Table 8: Vaccine Efficacy – First COVID-19 Occurrence From 7 Days After Dose 3 – Blinded Follow-Up Period – Participants Without Evidence of Infection Prior to 7 Days After Dose 3 – Phase 2/3 – 6 Months to 4 Years of Age – Evaluable Efficacy (3-Dose) Population

First COVID-19 occurrence from 7 days after Dose 3 in participants without evidence of prior SARS-CoV-2 infection*										
Subgroup	COVID-19 mRNA Vaccine 3 mcg/Dose Na=873 Cases n1b Surveillance Timec (n2d)	Placebo Na=381 Cases n1b Surveillance Timec (n2d)	Vaccine Efficacy % (95% CI ^e)							
6 months through	13	21	73.2							
4 years ^e	0.124 (794)	0.054 (351)	(43.8, 87.6)							
	9	13	71.8							
2 through 4 years	0.081 (498)	0.033 (204)	(28.6, 89.4)							
6 months through	4	8	75.8							
23 months	0.042 (296)	0.020 (147)	(9.7, 94.7)							

Abbreviations: NAAT = nucleic acid amplification test; N-binding = SARS-CoV-2 nucleoprotein-binding; SARS-CoV-2 severe acute respiratory syndrome coronavirus 2; VE = vaccine efficacy.

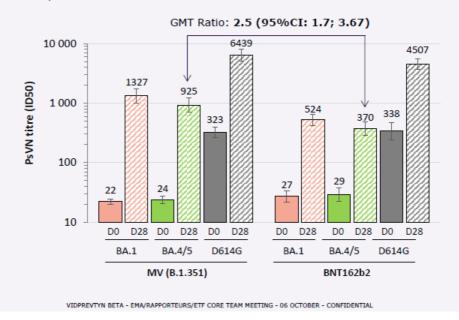
- 3-dose regimen, since a two-dose regimen showed inferior immunogenicity in the 2-5 years old stratum, compared to young adults.
- **Immunobridging strategy**: GMTs and SCR of neutralising abs (primary endpoint) non-inferior to individuals 16-25 years of age where efficacy was demonstrated
- Efficacy analysis exploratory similar with or without prior SARS-CoV-2 infection
 - Preliminary data indicate comparable neutralization of delta and BA.1 vs. adults. Efficacy against BA.5 not studied.
- Duration of protection unknown
- Special populations not yet studied

Safety of mRNA COVID-19 vaccines (6m-4/5y)

- Most common side effects comparable to older age groups (fatigue, myalgia, nausea, injection site reactions etc).
- Irritability, sleepiness, loss of appetite, rash and tenderness at the injection site with Comirnaty (N= 4,550).

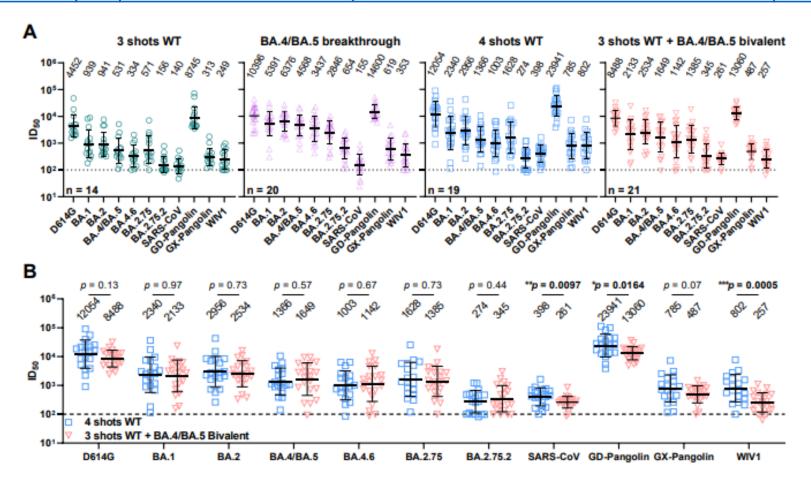
 Irritability, crying, loss of appetite and sleepiness with Spikevax (N=6,400). Mild or moderate, resolved within a few days,
- Risk of myocarditis/pericarditis compared to unexposed persons: very rare
 - Comirnaty: 0.3 extra cases in 12-29 y males / 10,000; 0.6 in 16-24y males / 10,000
 - Spikevax: 1.3 extra case in 12-29y males / 10,000; 1.9 extra cases in 16-24y males / 10,000
- Risk of heart complications higher with COVID-19 than after vaccination. Most patients fully recover
- Emerging data (including from the USA where millions of children are vaccinated) indicate that COVID-19 vaccines are well tolerated in children
 - ✓ Clinical trials showed that side effects of vaccines are usually mild or moderate and go away in a few days
 - ✓ Myocarditis much lower in 5-11 vs. 12-17-year-olds
 - ✓ No cases of myocarditis reported in 1.4 million children aged 6 months to 4 years until October 2022 (CDC)

Vidprevtyn Beta

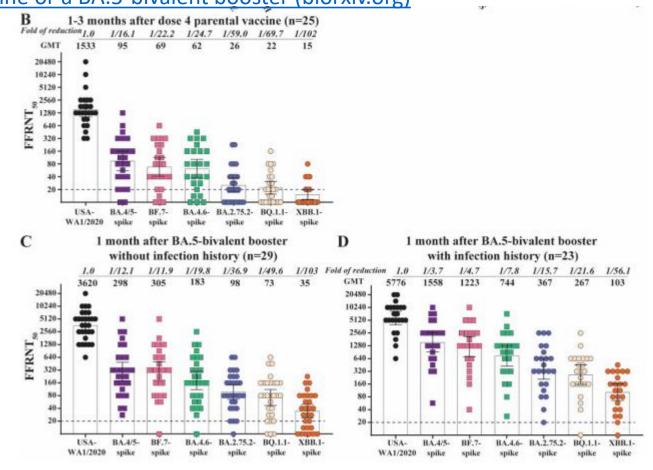

Re-analysis with validated Monogram PsVNA

Re-analysis against Omicron BA.4-5 conducted with validated Monogram PsVN assay as per request.

Results demonstrate higher titres against Omicron BA.4-5 with Vidprevtyn beta as compared to Pfizer/BioNTech. If pre-defined, analysis would meet superiority criteria.


Vidprevtyn Beta induces higher cross-neutralizing BA.4/5 antibodies vs BNT162b2 prototype in fully validated PsVN assay

Results consistent with responses to Omicron BA.1 and D614G



sanofi

Antibody responses to Omicron BA.4/BA.5 bivalent mRNA vaccine booster shot | bioRxiv

Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1, and XBB.1 by 4 doses of parental mRNA vaccine or a BA.5-bivalent booster (biorxiv.org)

Effectiveness of Bivalent mRNA		Relative VE (95% CI), by no. of monovalent doses received									
Vaccines in Preventing Symptomatic	Age group, yrs/mos since receipt of most recent monovalent dose	2 doses	3 doses	4 doses [§]	≥2 doses						
SARS-CoV-2 Infection — Increasing	18-49										
Community Access to Testing	2-3	45 (31–56)	24 (14-33)	NA	30 (22–37)						
Program, United States, September—	4-5	47 (35–57)	41 (35-47)	NA	43 (38-48)						
November 2022 MMWR (cdc.gov	6-7	42 (30-52)	47 (42–52)	NA	46 (41–50)						
	≥8	53 (45-60)	58 (56-61)	NA	56 (53-58)						
	50-64										
	2-3	_	15 (-4-31)	33 (24-41)	31 (24–38)						
	4-5	44 (18-62)	31 (18–42)	36 (29-43)	36 (30-41)						
	6-7	46 (22–62)	36 (25-45)	40 (32-47)	38 (32-43)						
	≥8	61 (49–70)	51 (45-55)	NA	48 (45–51)						
	≥65										
	2-3	_	_	32 (23-40)	28 (19–35)						
	4-5	_	21 (1–36)	36 (29-42)	33 (27–39)						
	6-7	_	14 (-6-30)	40 (33-46)	36 (29-41)						
	≥8	45 (27–58)	42 (35–48)	NA	43 (39-46)						
Classi	fied as public by the European Medicines Agency										

COVID-19 treatments <share

Currently under rolling review

No treatments currently under rolling review

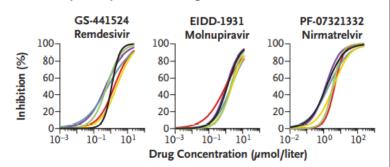
Marketing authorisation application submitted

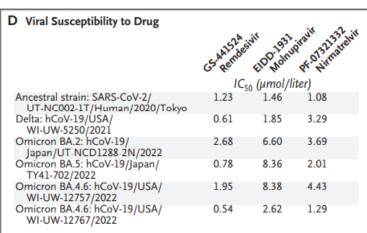
- Lagevrio
 (molnupiravir)
- Olumiant (baricitinib)*

Authorised for use in the European Union

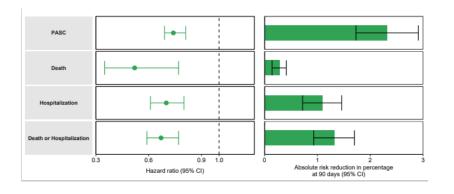
- Evusheld (tixagevimab)
 / cilgavimab)
- Kineret (anakinra)*
- Paxlovid (PF-07321332 / ritonavir)
- Regkirona (regdanvimab)
- RoActemra (tocilizumab)*
- Ronapreve (casirivimab / imdevimab)
- Veklury (remdesivir)
- Xevudy (sotrovimab)

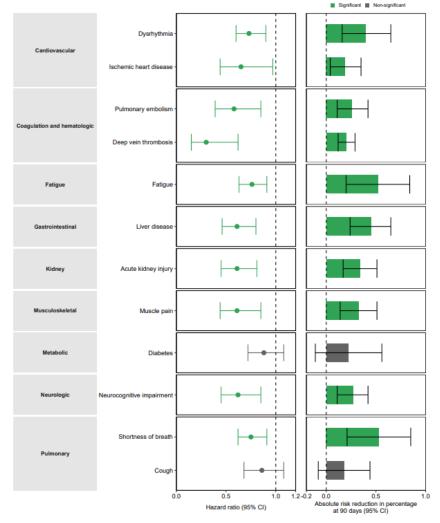
<u>Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution</u> (biorxiv.org)


a ·																		
_	Pango			REGN10933			COV2-	BRII-	BRII-	BRII-	S309		LY-CoV	SA58	SA55	SA55+	Additional RBD	
	lineages	10933	10987	+10987	2196	2130	2196+2130	196	198	196+198		604	1404			SA58	mutations	
	BA.2	*	590	821	4312	6.3	8.2	8530	8990	8610	852	219	0.9	5.1	7.2	7.8		
	BA.2.3.20	121	*	199	15	*	26	14	*	24	897	181	9.7	20	4.6	7.8	K444R+N450D+L452M +N460K+R493Q	
	BA.2.10.4	*	*		*	289	501	2109	7990	3984	706	6348	1.3	4.3	4.9	5.0	G446S+F486P+R493Q +S494P	
	BJ.1	*	*	•	3076	*	5985	7609	*	*	709	166	*	8163	3.7	8.6	D339H+R346T+L368I+ V445P+G446S+V483A +F490V	
	XBB	٠	٠	•	*	*	*	٠	*	•	963	*	٠	8805	5.3	9.8	D339H+R346T+L368I+ V445P+G446S+N460K +F486S+F490S+R493Q	
	BA.2.75	278	*	410	119	352	121	1730	6622	3861	672	5920	2.2	246	4.3	9.6		
-	BL.1	260	*	511	93	*	174	1251	*	3075	508	7193	2.8	7975	6.3	10	R346T	
	BR.1	319	*	679	117	*	170	1992	*	3160	564	6689	*	1616	5.9	9.7	L452R+K444M	
-	BN.2.1	390	*	701	59	303	109	4101	*	8444	6979	8901	1.7	4960	5.7	9.4	K356T+F490S	
	BN.1	344	*	599	70	*	166	3683	*	7791	*	6012	3.3	8295	4.9	9.0	R346T+K356T+F490S	
	BA.2.75.2	*	*	*	*	*	*	*	*	*	852	*	3.0	6922	5.9	9.7	R346T+F486S	
	BM.1.1	*	*	*	*	*	*	*	*	*	879	*	2.3	8823	5.2	8.9	R346T+F486S	
	BM.1.1.1	*	*	*	*	*	*	*	*	*	956	*	1.9	8082	4.8	10.5	R346T+F486S+F490S	
-	BR.2	*	*	*	*	*	*	*	*	*	921	*	2.6	7263	4.7	10.5	R346T+L452R+F486I	
	CA.1	*	*	*	*	*	*	*	*	*	897	*	3.2	6927	6.0	11.5	R346T+L452R+F486S	
•	BA.4/5	*	520	709	*	23	40	7124	*	*	1055	6264	0.8	3.9	5.0	4.5		
	BA.4.6.1	*	2338	5402	*	*	*	4763	*	7809	4456	4634	1.2	50	4.8	9.9	R346T	
	BA.5.6.2	*	*	*	*	*	*	4636	*	7883	1408	5892	1662	58	5.1	8.9	K444T	
	BQ.1	*	*	*	*	*	*	*	*	*	1709	*	1905	44	6.6	9.2	K444T+N460K	
-	BU.1	*	*	*	*	*	*	*	*	*	1082	*	26	56	5.3	10.5	K444M+N460K	
	BQ.1.1	*	*	*	*	*	*	*	*	*	5581	*	*	900	5.9	10.3	R346T+K444T+N460K	
											Ps	eudov	irus IC50	(ng/m	L)	<100	100~1,000 >1,000	

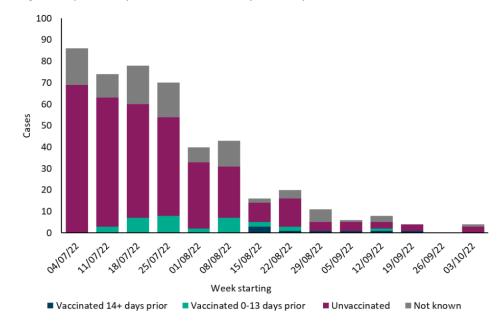

Impact of virus variants on activity of antivirals vs Mabs SARS-COV2

В	Neutralization	Efficacy	of	Monoclonal	Antibodies
---	----------------	----------	----	------------	------------


	RECHIOS I	ab RECILIONS	SON TOP STATE		Sylvectiff (ng/ml)	TC Bestelow	RECHIEFT	Conconstitution
Ancestral strain: SARS-CoV-2/UT-NC002-1T/Human/2020/Tokyo	1.87	4.01	3.17	5.36	16.71	3.31	4.89	5.35
Delta: hCoV-19/USA/WI-UW-5250/2021	4.31	7.15	4.63	8.93	255.55	1.72	3.26	10.57
Omicron BA.2: hCoV-19/Japan/UT-NCD1288-2N/2022	653.29	>50,000	2020.05	27.12	>50,000	6.9	390.97	38.93
Omicron BA.5: hCoV-19/Japan/TY41-702/2022	174.78	>50,000	>50,000	70.34	>50,000	3.03	394.6	92.62
Omicron BA.4.6: hCoV-19/USA/WI-UW-12757/2022	322.57	>50,000	>50,000	>50,000	>50,000	3.8	258.83	>10,000
Omicron BA.4.6: hCoV-19/USA/WI-UW-12767/2022	307.11	>50,000	>50,000	>50,000	>50,000	2.26	426.89	>10,000


C Inhibitory Activity of Antiviral Drugs

Nirmatrelvir and the Risk of Post-Acute Sequelae of COVID-19



97708236 (medrxiv.org)

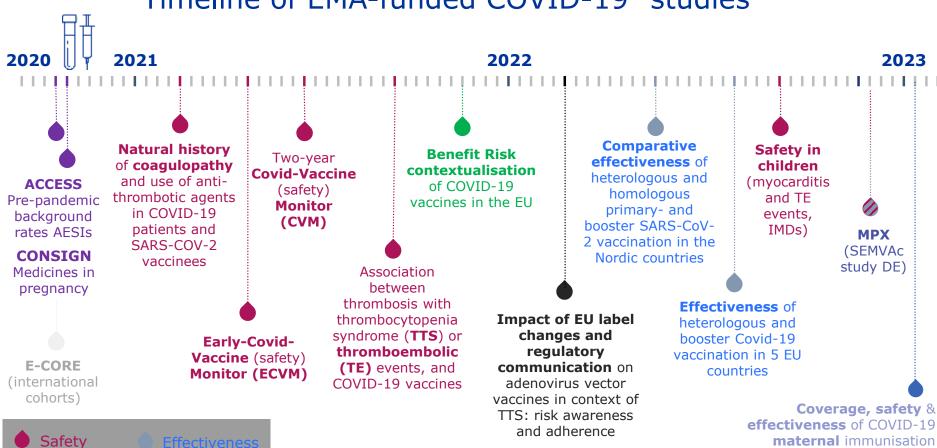
BREAKTHROUGH INFECTIONS – VACCINATED VS UNVACCINATED - CURRENT MPOX PHEIC

- Effectiveness of one dose of MVA-BN smallpox vaccine against monkeypox in England using the case-coverage method. Bertran, et al (UKHSA) preprint.
- Assessed the VE of a single MVA-BN dose in high-risk gay, bisexual and other MSM (excluded female and heterosexual). Case-coverage method: vaccination rates among cases is compared to population coverage. 363 confirmed cases. The central estimate of VE after ≥ 14 days of a single dose of smallpox vaccine was 78% (95% CI: 54%-89%) (range 71%-85% sensitivity analyses), with no evidence of protection in the first 13 days after vaccination.

Figure 2. Number of monkeypox cases by week and vaccination status from 4 July 2022 (week 27) to 9 October 2022 (week 40)

VACCINE- EFFORTS IN DATA COLLECTION

- Several initiatives in different MSs that could be extended for an EU or global initiative, have been presented and discussed at ETF for scientific advice.
- Collaboration with VACCELERATE EU network for vaccines clinical trials.
- The newly established Vaccine Monitoring Platform (VMP), a joint collaboration between EMA and ECDC, is serving as forum for discussing the technical aspects and looking into funding options.
- Safety and effectiveness of MVA-BN vaccination against MPXV infection in atrisk individuals in Germany (SEMVAc study): multicenter, prospective, non-interventional, observational, pre-exposure prophylaxis cohort study. Primary endpoint: VE of MVA-BN against symptomatic PCR-confirmed MPX, defined as reduction in risk of infection/disease in vaccinated versus unvaccinated individuals. N=15,000 individuals (5000 vaccinated).


TECOVIRIMAT – EFFORTS IN DATA COLLECTION

- Several initiatives in different MSs that could be extended for an EU or global initiative, have been presented and discussed at ETF for scientific advice.
- MOSAIC study. Changed design to Low-interventional clinical trial sponsored by Oxford University, ANRS (FR) and HUG (CH) extended to EU MSs after discussion with ETF including CTCG members. A cohort study collecting harmonised data in patients treated or not treated with tecovirimat. Focus on the longer term will be on patients with more severe disease.
- Contribution to RCT study design developed by WHO CORE protocol

TECOVIRIMAT – EFFORTS IN DATA COLLECTION

- For mild-moderate MPX, there is agreement that a randomised clinical trial is ethical and needed to ascertain the clinical impact of the use of antivirals
- European Randomized Clinical Trial on Monkeypox Infection (EPOXI). Conducted by the EU funded network European Clinical Research Alliance on Infectious Diseases Europe.
- This is a platform trial to find the best treatment for monkeypox disease.
- The initial intervention will be an international randomized placebo-controlled double-blind clinical trial to evaluate tecovirimat 600mg bid for 14 days. UMC Utrecht is the study sponsor, and NL is the proposed reference MS when applying through CTIS. The initial sample will be 1000 adults, that suffer from mild, moderate or severe monkeypox disease and have a positive PCR for monkeypox virus.
- Primary endpoint is days from randomization until resolution of lesions.

Timeline of EMA-funded COVID-19* studies

*one MPX study

Impact

(TBD) 17

How can ENCePP support public health crisis

management?

Evidence free pharmacoepidemiological studies on COVID-19 vaccines has contributed to EMA decision-making → e.g., rolling appraisals of emerging independent evidence by EMA's pandemic task force (ETF)

- EMA extended mandate (ECDC/EMA vaccine monitoring platform): effectiveness studies, benefit/risk contextualisation -> importance of methods and selection of suitable data sources
- Research questions important for regulatory decision-making may be discussed with / addressed by the ENCePP community → leverage expertise

The European Union electronic Register of Post-Authorisation Studies (EU PAS Register)

On this page you can register (or resume a draft application for) a new study, update existing study records or search the EU PAS Register.

n the study

To **register a new study** please click on 'Add Study' below: (If this is a study related to the coronavirus pandemic, please include the text **COVID-19** title)