

Safety and effectiveness of MVA-BN vaccination against MPox infection in at-risk individuals in Germany & US

Pierre Engel, ENCePP Plenary, Nov 30, 2022

Disclaimer

- Pierre ENGEL is an employee of Aetion inc. specialized in RWE and currently selected among the EMA framework contractors for pharmacoepidemiology research
- Pierre ENGEL has signed for this study a declaration of interest endorsed by the EMA and has no direct or indirect link with MonkeyPox (Mpox) Vaccine or Drug manufacturers

Monkeypox outbreak & studies context

- EMA and ECDC support pharmacoepidemiological studies to reactively assess its benefit risk of MVA-BN on Mpox
- Aetion has been selected as the scientific coordinator for SEMVAc* (primary data collection) & is conducting USMVac (secondary data collection)

* SEMVAC (Safety and Effectiveness'of MVA-BN vactination agamst MPXV Infection Aleatyrisk individuals in Germany)

Д

³ Copyright Aetion, Inc. Confidential

General challenges of MPX vaccines studies

Identification of population at risk	Heterogeneity of disease severity
Measuring vaccine exposure and identifying Mpox cases	The dynamic epidemiology of MonkeyPox
Sample size	Channeling bias
Safety data	Vaccine distribution and administration patterns
Follow-up and attrition of the MPX population	Balancing the challenges of working with near-real-time data with need for timely and relevant data

SEMVAc Study Diagram

Design: Observational, prospective based on multicentre primary data collection cohort

Objective: To Assess the safety & effectiveness of MVA-BN against Monkeypox disease in the vulnerable high-risk MSM population.

USMVAc Study Diagram

6

Design: Observational cohort study using U.S. secondary healthcare data aggregated from HealthVerity

Objective: Assess the safety & effectiveness of MVA-BN against Monkeypox disease in the vulnerable high-risk MSM population.

Pay Z: Patients who develop the butcome of the state of the stady objective, died

Trade-offs between data collection methods

SEMVAc (Primary data collection)

Advantages Limitations Limitations **Advantages Patient variables** Operations **Patient variables** Operations Limited or no PROs Near-real-time data • Study tailored CRF **Enrolment challenges** • • information capture Duration and resources Accuracy of exposure . Resources (faster and Missing data • . assessment for the study generally cheaper) (differential) Loss to • Outcome assessments Health care resource use • (symptoms, PCR follow-up Limited information / • confirmation) & risk recall bias for available behavior) variables **Benefit Risk analyses** Bias **Benefit Risk analyses** Bias Timely/on safety Selection bias Sample size Identification of MPX • • ٠ monitoring Hawthorne effect Good look back period patients • • Lower probability of Reporting/information prior vaccination Mpox, Misclassification of • • misclassification bias Data representativeness vaccination status **Residual confounding Risk-set sampling** Residual confounding outcome assessment strategies **Resource** utilization

USMVAc (Secondary data collection)

Classified as internal/staff & contractors by the European Medicines Agency

Complementary approaches

	SEMVAc	USMVAc	Comments
Population	 Pre-Exposure Prophylaxis (PrPEP) MSM populations 	 Post-Exposure Prophylaxis (PEP) & Pre-Exposure Prophylaxis (PrPEP) MSM populations Three other populations are considered 	 USMVaC provides further descriptions of MPX populations US & EU populations with similar vaccination policies
Intervention / Comparison (exposure)	 15,000 (5,000 vaccination group, 10,000 control group) 	 Two doses of MVA-BN administration Unvaccinated population 	 Similar patients PS matching SEMVAc is not subject to vaccination misclassification
Outcomes	 Primary Outcome Measure: reduction in risk of disease in vaccinated versus unvaccinated individuals. Secondary Outcome Measures=Safety and tolerability of MVA-BN vaccination 	 Primary Outcome: reduction in MPX infection, Hospitalization for MPX, Death or hospitalization, Secondary Outcome Measures=Safety and tolerability 	• More outcomes are studied in USMVAc however Safety reporting, tolerability and causality assessment is better in SEMVAc

Complementary approaches

	SEMVAc	USMVAc	Comments
Timing	 Follow-up duration : up to 12 months, 	• Follow-up from July 2022 till the last available date at the time of cohort extraction but FU may be shorter.	 Broader pre- vaccination exposure observation period in USMVAc
Setting	• Study centers experienced treatment of MSM and HIV patients in Germany (Berlin Area mainly)	 Patients identified through Medical and pharmacy claims along with hospital chargemaster, EMR, and laboratory data (HV) 	 German study centers not EU representative HV greater representativeness in US
Covariates	 Risk of Exposure to Mpox (Risk behavior, Sexual history Health indicators and underlying medical conditions Tolerability/reactogenicity of the vaccine Symptoms indicative of Mpox infection 	 Previous infections/vaccinations Immunocompromised status Immunosuppressive therapies Healthcare utilization intensity 	 PROs Risk behavior and symptoms (SEMVac) More covariates to be included for PS matching in USMVAc

Conclusion

1. Both studies are focus on the Benefit Risk of smallpox vaccination against the current Monkeypox pandemic

1. Primary data collection and secondary data use, both have advantages and disadvantages and are of complementary value

1. Given the similarity of vaccination strategies, the use of routine US healthcare data is powerful and timely

1. Beyond the assessment of safety and effectiveness, different impact of potential confounders and subgroup analysis may provide important public health insights

Credits

9

EUROPEAN MEDICINES AGENCY SCIENCE MEDICINES HEALTH

Luca Giraldi – Contract Manager, EMA (POC & Science) Cohet Catherine – S. Pharmacoepidemiologist, EMA (Science) Leal Alexander Lorna – Infection disease & vaccine specialist EMA Pandemic Task Force (Science) Nathalie Nicolay – ECDC Infectious diseases specialist (Science) Xavier Kurz – Head, Data Analytics Workstream Maryam Vejdani – Procurement AETION

Emmanuelle Jacquot Senior Director, Science (Science Lead and PI for USMVAc) Rosa Pandolfo Director, Engagement (operational POC) Jess Davies Director, Data Insights Nicolas Deltour VP, Real World Strategy (SME) Pierre Engel Senior Director, Growth (SME) Bethany Knox Scientist, Science Delivery Anabel Ferreras Director, Engagement

Prof. Dr. Leif Erik Sander (Principal investigator) PD Dr. Florian Kurth (Study Lead) Pinkus Tober-Lau (Study physician and statistician) Han Le (Study physician) David Hillus (Study Physician) Katharina Richter – Invoicing and Contracting Leu Huang – Science and operations Susanne Keßler – Scheduling of meetings