Many statistical signal detection algorithms disregard the underlying diversity and give equal weight to reports on all patients when computing the expected number of reports for a drug-event pair. This may give them vulnerability to confounding and distortions due to effect modification, and could result in true signals being masked or false associations being flagged as potential signals. Stratification and/or subgroup analyses might address these issues, and whereas stratification is implemented in some standard software packages, routine use of subgroup analyses is less common. Performance of stratified and subgrouped disproportionality analyses in spontaneous databases (Drug Saf. 2016; 39(4):355-64) performed a comparison across a range of spontaneous report databases and covariates and found subgroup analyses to improve first pass signal detection, whereas stratification did not; subgroup analyses by patient age and country of origin were found to bring the greatest value.