An epidemiological study measures a parameter of occurrence (generally incidence, prevalence or risk or rate ratio) of a health phenomenon (e.g., a disease) in a specified population and with a specified time reference (time point or time period). Epidemiological studies may be descriptive or analytic. Descriptive studies do not aim to evaluate a causal relationship between a population characteristic and the occurrence parameter and generally do not include formal comparisons between population groups. Analytic studies, in contrast, use study populations assembled by the investigators to assess relationships that may be interpreted in causal terms. In pharmacoepidemiology, analytic studies generally aim to quantify the association between a drug exposure and a health phenomenon and test the hypothesis of a causal relationship. They are comparative by nature, e.g., comparing the occurrence of an outcome between subjects being drug users or being non-users or users of a different medicinal product.
Studies can be interventional or non-interventional (observational). Observational Studies: Cohort and Case-Control Studies (Plast Reconstr Surg. 2010;126(6):2234-42) provides a simple and clear explanation of the different types of observational studies and of their advantages and disadvantages. In interventional studies, the subjects are randomly assigned by the investigator to be either exposed or unexposed. These studies, known as randomised clinical trials (RCTs), are typically conducted to test the efficacy of treatments such as new medications. In RCTs, randomisation is used with the intention that the only difference between the exposed and unexposed groups will be the treatment itself. Thus, any differences in the outcome can be attributed to the effect of such treatment. In contrast to experimental studies where exposure is assigned by the investigator, in observational studies the investigator plays no role with regards to which subjects are exposed and which are unexposed. The exposures are either chosen by, or are characteristics of, the subjects themselves.
In order to obtain valid estimates of the effect of a determinant on a parameter of disease occurrence, analytic studies must address three types of epidemiological errors: random error (chance), systematic error (bias) and confounding.
There are many different situations where bias may occur, and some authors attribute a name to each of them. The number of such situations is in theory illimited. ENCePP recommends that, rather than being able to name each of them, it is preferable to understand the underlying mechanisms of information bias, selection bias and confounding, be alert to their presence and likelihood of occurrence in a study and recognise methods for their prevention, detection, and control at the analytical stage if possible, such as restriction, stratification, matching, regression and sensitivity analyses. Chapter 5.1 on methods to address bias nevertheless treats time-related bias (a type of information bias with misclassification of person-time) separately as it may have important consequences on the result of a study and may be dealt with by design and time-dependent analyses.
The interpretation of evidence in epidemiology has often relied on whether the p-value is below a certainty threshold and/or the confidence interval excludes some reference value. The ASA statement on P values: context, process, and purpose (Am Statistician 2016;70(2),129-33) of the American Statistical Association emphasised that a p-value, or statistical significance, does not provide a good measure of evidence regarding a model or hypothesis, nor does it measure the size of an effect or the importance of a result. It is therefore recommended to avoid relying only on statistical significance, such as p-values, to interpret study results (see, for example, Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations, Eur J Epidemiol. 2016;31(4):337-50; Scientists rise up against statistical significance, Nature 2019;567(7748):305-7; It’s time to talk about ditching statistical significance, Nature 2019;567(7748):283; Chapter 15. Precision and Study size in Modern epidemiology, Lash TL, VanderWeele TJ, Haneuse S, Rothman KJ, 4th edition, Philadelphia, PA, Wolters Kluwer, 2021). This series of articles led to substantial changes in the guidelines for reporting study results in manuscripts submitted to medical journals, as discussed in Preparing a manuscript for submission to a medical journal (International Committee for Medical Journal Editors, 2021). Causal analyses of existing databases: no power calculations required (J Clin Epidemiol. 2022;144:203-5) encourages researchers to use large healthcare databases to estimate measures of association as opposed to systematically attempting at testing hypotheses (with sufficient power). The ENCePP also recommends that, instead of a dichotomous interpretation based on whether a p-value is below a certain threshold, or a confidence interval excludes some reference value, researchers should rely on a more comprehensive quantitative interpretation that considers the magnitude, precision, and possible bias in the estimates, in addition to a qualitative assessment of the relevance of the selected study design. This is considered a more appropriate approach than one that ascribes to chance any result that does not meet conventional criteria for statistical significance.
The large number of observational studies performed urgently with existing data and in sometimes difficult conditions in early times of the COVID-19 pandemic has raised concerns about the validity of many studies published without peer-review. Considerations for pharmacoepidemiological analyses in the SARS-CoV-2 pandemic (Pharmacoepidemiol Drug Saf. 2020;29(8):825-83) provides recommendations across eight domains: (1) timeliness of evidence generation; (2) the need to align observational and interventional research on efficacy (3) the specific challenges related to “real‐time epidemiology” during an ongoing pandemic; (4) which design to use to answer a specific question; (5) considerations on the definition of exposures and outcomes and what covariates to collect ; (6) the need for transparent reporting; (7) temporal and geographical aspects to be considered when ascertaining outcomes in COVID-19 patients, and (8) the need for rapid assessment. The article Biases in evaluating the safety and effectiveness of drugs for covid-19: designing real-world evidence studies.(Am J Epidemiol. 2021;190(8):1452-6) reviews and illustrates how immortal time bias and selection bias were present in several studies evaluating the effects of drugs on SARS-CoV-2 infection, and how they can be addressed. Although these two examples specifically refer to COVID-19 studies, such considerations are applicable to research questions with other types of exposures and outcomes.